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SUMMARY

Consideration is given in this paper to the numerical solution of the transient two-phase flow in rigid
pipelines. The governing equations for such flows are two coupled, non-linear, hyperbolic, partial
differential equations with pressure dependent coefficients. The fluid pressure and velocity are considered
as two principle dependent variables. The fluid is a homogeneous gas–liquid mixture for which the
density is defined by an expression averaging the two-component densities where a polytropic process of
the gaseous phase is admitted. Instead of the void fraction, which varies with the pressure, the gas–fluid
mass ratio (or the quality) is assumed to be constant, and is used in the mathematical formulation. The
problem has been solved by the method of non-linear characteristics and the finite difference conservative
scheme. To verify their validity, the computed results of the two numerical techniques are compared for
different values of the quality, in the case where the liquid compressibility and the pipe wall elasticity are
neglected. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Two-phase flows occur in piping systems in several industries, such as nuclear and geothermal
power plants, petroleum industries and sewage pipelines. The transient flow in these cases
affects a mixture of different states, liquid and gaseous. As the gas–liquid mixture is
compressible, the wave propagation velocity varies with the pressure [1] and the system of
equations describing the transient two-phase flow is non-linear. Analytical solution of these
equations is generally not available. Numerical solutions of the non-linear partial differential
equations governing homogeneous two-phase transient flow have been treated by several
authors during the last 30 years. These numerical solutions are more complex and difficult
than those where the transient flow concerns pure liquid. The complexity arises when the wave
front is computed as the expansion waves spread, the compression waves steepen and the
shock wave inception may manifest.

Martin et al. [2] have developed two numerical methods: the method of characteristics and
the finite difference Lax–Wendroff method. The finite difference method has been employed
and preferred over the method of characteristics due to available facilities. Chaudry et al. [3],
have used two second-order explicit finite-difference techniques coupled with the characteristic
equations at the pipe boundaries. To develop the numerical solution of gaseous-cavitating
transient flow, Wiggert and Sundquist [4] have utilized the method of characteristics based on
the specified distance and time increments. However, this technique requires spatial interpola-
tions resulting in some numerical dissipation of the pressure wave fronts.
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Most of the above mentioned investigations has modelled the homogeneous two-phase
transient flow by using the void fraction which varies with the pressure.

The purpose of the present paper is to numerically investigate the non-linear behaviour of
the transient two-phase flow. Instead of the void fraction, the developed model uses the
gas–fluid mass ratio, or the quality as called by Pascal [5], assumed to be constant. The pipe
elasticity and the liquid compressibility are neglected against the gas deformability. Since the
governing equations of such flow are non-linear, the solution of the mathematical equations
system can be obtained only by some approximate numerical techniques. Two numerical
techniques are employed in this paper. They are the method of characteristics grid and the
finite differences conservative method. Numerical results obtained by these two methods are
compared for different values of the quality.

2. MATHEMATICAL MODEL

A one-dimensional mathematical model which describes the transient behaviour of gas–liquid
mixture flow is presented. The model is based on conventional waterhammer theory. In this
study, the liquid compressibility and the pipe wall elasticity are neglected relative to the gas
deformability. The pipe conveying fluid at pressure p, is assumed to be cylindrical (of circular
cross section) and has a constant diameter D. The mixture is assumed to be made of small gas
bubbles uniformly distributed in the liquid and the slip velocity of gas bubbles relative to the
liquid velocity is neglected. So the number of bubbles per unit fluid volume may be assumed
to be constant and then the quality, or the gas–fluid mass ratio, may also be considered as
constant. The wall shear stress is assumed to be the same as if the flow were steady and is
defined by the steady state Darcy–Weisbach formula depending on the friction factor.

2.1. Two-phase mixture density

The two-phase homogeneous fluid is made of incompressible liquid containing gas bubbles
uniformly distributed and evolving according to the polytropic process:

p/rg
n=p0/rg0

n , (1)

where p is the pressure, rg the gas density and n the polytropic exponent. The subscript 0 refers
to the initial thermodynamics conditions.

By noting u=Mg/(Mg+Ml), the gas–fluid mass ratio or the quality, the two-phase mixture
density r may be expressed in terms of the two components densities as follows:

1/r=u/rg+ (1−u)/rl. (2)

Using relation (1), Equation (2) becomes:

r(p)= [(u/rg0
)(p0/p)1/n+ (1−u)/rl]−1, (3)

where rl is the liquid density, assumed to be constant.

2.2. Motion equations

The equations which describe transient one-dimensional flow can be adapted from the
analytical model developed by Streeter and Wylie [6]. Applying the law of conservation of
mass and momentum, to an element of fluid between two sections x and x+dx of the pipe,
yields the following equations of continuity and motion:
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(r/(t+((rV)/(x=0 (4)

(V/(t+V (V/(x+1/r (p/(x=gI−lV �V �/2D, (5)

where V is the fluid velocity, I the slope of the pipe, l is the coefficient of friction, A is the
cross section area of the pipe, t is the time and x is the distance along the pipe.

3. NUMERICAL SOLUTION

The numerical solution of the initial boundary value problem governed by Equations (4) and
(5) is described. Two numerical solution techniques are used. The method of characteristics has
been discussed in detail by Abbott [7] and it has been used to solve various wave propagation
problems in fluid by several authors, e.g. Streeter and Wylie [6], Wiggert and Sundquist [4],
Wiggert and Stuckenbruck [8], Rachid and Stuckenbruck [9] and Tijsselling [10]. The method
of characteristics, which is based on the propagation celerity of the pressure waves, is applied
to obtain ordinary differential equations. In principle, it is not a numerical but an analytical
solution method. However, some of the necessary integration is generally done numerically.
The finite difference conservative method, for solving partial differential equations, is quite
classical and the work of Lax–Wendroff [11], is an excellent reference for difference method
for non-linear hyperbolic equations.

3.1. Method of characteristics

By introducing the wave speed C defined by:

C= ((r/(p)−1/2= (unp0/rg0
)1/2(p/p0)(n−1)/2n[1+ ((1−u)/u)(rg0

/rl)(p/p0)1/n] (6)

and represented in Figure 1, the continuity equation may be rewritten as follows:

1
rC2

�(p
(t

+V
(p
(x
�

+
(V
(x

=0. (7)

Figure 1 indicates that the wave speed varies considerably with both the pressure and the
quality. The other data from Equation (6) used in producing Figure 1 are:

Figure 1. Pressure wave speed in rigid pipes.
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Figure 2. The characteristic lines in the x, t plane.

n=1.4, rl=1000 kg m−3, rg0
=1.29 kg m−3, p0=105 Pa

By applying the characteristics theory [6], the following ordinary differential equations
result:

C+!dV+dU= [gI−lV �V �/(2D)] dt
dx= (V+C) dt

(8)

and

C−!dV−dU= [gI−lV �V �/(2D)] dt
dx= (V−C) dt

(9)

in which U is the Riemann invariant defined by:

dU=dp/(rC). (10)

Taking Equations (3) and (6) into account, Equation (10) yields:

U= [2/(n−1)](nup0/rg0
)1/2(p/p0)(n−1)/2 and p=p0{[(n−1)/2][rg0

/(nup0)]1/2U}2n/(n−1).
(11)

Thus the unknown values of V and U at any point P as shown in Figure 2, can be
determined by finding their values at the points R and S lying on the two characteristics C+

and C− passing through P, and by integrating Equations (8) and (9) along the relevant
characteristic lines.

The characteristics are curved lines on the x, t plane, so this integration can be achieved by
means of an iterative trapezoidal integration rule [14]. We obtain the unknown values xP, tP,
VP, UP :

tP
k =

1
2

xS−xR+1/2[(VP+CP)k−1+ (VR+CR)]tR−1/2[(VP−CP)k−1+ (VS−CS)]tS

1/2[(VP+CP)k−1+ (VR+CR)]+1/2[(VP−CP)k−1+ (VS−CS)]
(12)

xP
k =xR+

1
2

[(VP+CP)k−1+ (VR+CR)](tP
k − tR) (13)

VP
k =

g
4
!

[(I−J)R+ (I−J)P
k−1](tP

k − tR)− [(I−J)S+ (I−J)P
k−1](tP

k − tS)

+
VR+UR+VS−US

g/2
"

(14)
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UP
k =UR+VR−VP

k +
g
2

[(I−J)R+ (I−J)P
k−1](tP

k − tR) (15)

J= −lV �V �/(2Dg) is the head loss.
A grid of characteristics is now established in order to accomplish an orderly computer

solution. The pipe of length L is initially discretized into N equal reaches, Dx=L/N. Hydraulic
conditions are known along the pipe at the initial time (given by initial steady state
conditions). Then through the use of Equations (12)–(15), we can find conditions at 1, 2 and
3 (Figure 3). With values of x, t, V, U known at each of these locations the grid can be
continued to 4 and 5.

From the numerical solution developed in Reference [6], the above procedure must be
slightly modified at the pipe boundaries by introducing the appropriate boundary conditions,
specifying VP and UP or a relation between them in each case. The boundary conditions
considered here are:

V(0, t)=0 at the upstream end, and U(L, t)=Cte=UL at the downstream end. (16)

For relatively low values of the quality, shock waves will form and will be transmitted along
the pipe. In this situation the characteristic grid tends to form an envelop when the shock wave
is formed (see point Q in Figure 3). The solution cannot be extended beyond this point unless
internal boundary conditions at the shock are included. For this reason, Martin et al. [2]
preferred the finite differences scheme over the characteristics method. In this study we have
deduced these conditions directly from the characteristics Equations (8) and (9). Also the
iteration number is limited to k=5.

3.2. Finite difference conser6ati6e method

The continuity equation (4) is in the so-called conservative form. Using the fluid density
expression (3), the equation of motion (5) can also be formulated in this form, that is:
(V
(t

+
(

(x
!V2

2
+
� n

n−1
u

rg0

�p0

p
�1/n

−
(1−u)

rl

n
p
"

=gI−
l

2D
V �V �. (17)

Written in a conservation form, the system of continuity and motion (Equations (4) and
(17)) can be solved with the two-step finite difference Sb

a scheme.
Following the techniques described by Lerat and Peyret [12], the two-step Sb

a scheme used
on conservative Equations (4) and (17) for any grid point (i, k+1), are as follows

First step of prediction (instant (k+a)Dt)

r i+b
k+a= (1−b)r i

k+br i+1
k −as [(rV)i+1

k − (rV)i
k]

(V)i+b
k+a= (1−b)(V)i

k+b(V)i+1
k −as [Fi+1

k −Fi
k]+

gDt
2

[(I−J)i+1
k + (I−J)i

k]. (18)

Figure 3. Characteristics grid.
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Figure 4. Finite differences scheme.

Second step of correction (instant (k+ l)Dt)

r i
k+1=r i

k−
s

2a
[(a−b)(rV)i+1

k + (2b−1)(rV)i
k+ (1−a−b)(rV)i−1

k + (rV)i+b
k+a

− (rV)i+b−1
k+a ]

Vi
k+1=Vi

k−
s

2a
[(a−b)Fi+1

k + (2b−1)Fi
k+ (1−a−b)Fi−1

k +Fi+b
k+a−Fi+b−1

k+a ]

+gDt(I−J)i
k, (19)

where

F(p, V)=V2/2+
� n

n−1
(u/rg0

)(p0/p)1/n− (1−u)/rl
n

p, i=1, . . . , N+1

refer to grid points in the x-direction and k and k+1 refer to old and new time steps in the
t-direction (Figure 4).

In these equations, s=Dt/Dx is the grid-mesh ratio and a, b are two parameters of values,
generally satisfying the conditions 05a, b51. Note that the particular values a=1/2 and
b=1/2 correspond to the two-step Lax–Wendroff method [13]. The Sb

a scheme is a three-
point, accurate method. It can be shown that the requirement condition for stability is given
by the Courant–Friedrichs–Lewy condition:

s51/(�V �+C). (20)

The finite difference equations (18) and (19) of the numerical scheme described herein, give
the value of the velocity, Vi

k+1, directly. The Newton–Raphson method [14], is used to
compute the pressure pi

k+1 from the calculated value of r i
k+1:

r(pi
k+1)−r i

k+1=0[ (pi
k+1)m+1= (pi

k+1)m−{r [(pi
k+1)m ]−r i

k+1}
,!(r
(p

[(pi
k+1)m ]

"
.

(21)

Using Equation (6), the following iterative algorithm is obtained:!(pi
k+1)0=pi

k

(pi
k+1)m+1= (pi

k+1)m−C2[(pi
k+1)m ]{r [(pi

k+1)m ]−r i
k+1}

(22)

which indicates that the pressure wave speed interferes not only with the stability condition
(20) but also with the finite difference scheme. m is the iteration number in the Newton–Raph-
son method.
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The values of the hydraulic parameters at the time corresponding to k=0, are given by the
initial steady state conditions.

4. NUMERICAL RESULTS

Consider the hypothetical hydraulic system shown by Figure 5. The pipeline is horizontal
I=0, of length L=20 000 m and diameter D=2 m. The fluid properties are:

rl=1000 kg m−3, p0=105 Pa, rg0
=1.29 kg m−3, n=1.4.

The head pressure at the pump is H0=100 m, the initial flow rate is Q0=7.30 m3 s−1 and
the friction factor is l=0.025

4.1. Initial conditions

The initial conditions (p0(x), V0(x)) can be determined by computing the solution of the
following system of ordinary differential equations:

d(rV)/dx=0 and dF(p, V)/dx=g(I−J) (23)

with the values for x=0:

p0(0)=r [p0(0)]gH0+p0 and V0(0)=4Q0/(pD2). (24)

r [p0(0)] is computed from Equation (3) by the iterative method: rm+1=r(rmgH0+p0).
The desired solution of the differential equation (23) may be obtained by the Runge–Kutta

algorithm [14]. The results are presented in Figure 6 for u=10−4.

4.2. Boundary conditions

Transient flow is created by a rapid pump failure at the upstream end x=0, that is:
V(0, t)=0. At the downstream end, x=L and t\0, the condition is given by the reservoir at
fixed level: p(L, t)=p0(L).

The pipe is divided into N equidistant sections in the x-direction Dx=L/N. From the CFL
stability condition (23), the time increment Dt may be valued at:

Figure 5. Hydraulic system.
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Figure 6. Initial steady state conditions.

Dt=L/[N*(V0(0)+C(p0(0)))] (25)

Two separate TURBO PASCAL programs were run on a HP 486/100 MHz computer.
The same problem has been solved with both methods using 30 grid points for the method
of characteristics and 120 grid points for the finite difference method. All the curves and
the characteristics diagrams presented herein have been plotted using Microsoft Excel 5.0.

The computed pressure results of the method of characteristics and finite difference
scheme S0

1, obtained for the quality values u=10−4, u=5×10−5, u=2.5×10−5 and
u=10−5, are shown in Figures 7 and 8. These pressures are at the upstream end (x=0)
and the middle (x=L/2) of the pipe. The agreement between these two methods is consis-
tent, particularly for the large values of the quality.

The computed times required by these two methods to complete the solution to :1000 s
are given together with the S0

1 time step in Table I. It is clear that the characteristics
method is less expensive than the finite differences scheme. Strelkoff [15] noted that explicit
numerical schemes, such as the Sa

b method, require small steps in time because of stability.
Moreover, as seen in Figure 9, with a comparatively small number of grid points (N=30),
the finite difference method results in too many oscillations and does not give smooth
results.

Figures 7 and 8 illustrate the phenomenon we are dealing with in the case of rigid pipe
and incompressible liquid. After the sudden pump failure, a negative pressure wave travels
along the steady state pressure gradient until it reaches the downstream end of the pipe. A
region of depression is developed for some time depending on the value of u. The positive
reflected pressure wave travelling from the end of the pipe causes pressure to rise. As the

Table I. The programs computed times

Characteristics method N=30 andQuality (u) Finite differences method (DT (T))
k=5 (T)

N=120N=30 N=60

1.013% (15¦)2.026¦ (6¦)10¦ 0.55¦ (50¦)10−4

0.718¦ (20¦) 0.359¦ (70¦)12¦5×10−5 1.435¦ (8¦)
2.5×10−5 0.254¦ (100¦)0.508¦ (29¦)1.016¦ (10¦)16¦

0.137¦ (180¦)0.274¦ (48¦)0.549¦ (16¦)24¦10−5
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Figure 7. Calculated pressures at the upstream end of the pipe (x=0). (Thin line) Finite differences S0
1 scheme. (Thick

line) Characteristics method.
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Figure 8. Calculated pressures at the middle of the pipe (x=L/2). (Thin line) Finite differences S0
1 scheme. (Thick

line) Characteristics method.
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Figure 9. Calculated pressures at the upstream end of the pipe (x=0). (Thin line) Finite difference S0
1 scheme, on the

left N=30 and on the right side N=60. (Thick line) Characteristics method.
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waves are damped by wall friction, the overpressure does not exceed the downstream
reservoir pressure (see Figure 8). The positive pressure propagates to the closed upstream
end and reflects here, causing more overpressure. The process is repeated until the pressure
fluctuations are dumped at the final steady state pressure.

It is possible to see that the presence of a great quantity of free gas (u=10−4) smoothes
the reflected suppressions. This can be explained by the fact that for large values of u, the
fluid mixture becomes more compressible, which increases its capacity to attenuate the
pressure fluctuations. For relatively small values of the quality, the overpressures become
severe and provoke shock waves to occur.

Figure 10 shows the characteristic grids for the sudden shut-off of all flow at the
upstream end of the pipe when the downstream pressure is maintained constant. Providing
the final steady state has not been established, the behaviour of characteristic paths in the
compression region differs from those of the depression region. For the relatively low
values of the quality u=2.5×10−5 and u=10−5, running together the grid lines indicates
the existence of shocks which are transmitted along the pipe. In this case internal boundary
conditions have been employed in the characteristics method. The phenomena of wave front
spreading, wave front steepening and wave shock inception are well represented in the
different characteristics diagrams. As the Excel 5.0 graphics logical capacity is limited to
4000 points, the characteristics lines are interrupted before reaching a time of 1000 s. By
correctly reducing the value of N it is possible to represent the characteristic diagrams to
this time.

5. SUMMARY AND CONCLUSION

The numerical solution of the transient two-phase flows in rigid pipelines has been pre-
sented in this paper. This problem is governed by two coupled non-linear partial differential
equations of the hyperbolic type. The two numerical methods employed are the method of
curved characteristics and the finite difference conservative method.

Of the two methods employed, the former seems to be the superior one. There is less
computer cost involved with this method. Supplementary equations are, however, necessary
in computing the hydraulic magnitudes at the shock wave front. The characteristics method
allows visibility of the shock inception in the x, t plane, but it requires the use of the
interpolation method to compute the pressure evolution at any interior section of the pipe.
Nevertheless, these interpolations have no effects on the precision of the numerical solution
and the evolution of the characteristic line.

The finite difference Sb
a method is more practical and correctly simulates the pressure

wave propagation. The values of the hydraulic parameters at the pipe boundaries were
simulated in this method without using characteristic equations, but they were deduced
directly from the numerical scheme equations presented herein. The minor oscillations ap-
pearing in the pressure curves may be reduced by choosing the time increment at the limit
of the stability condition and by increasing the number of the grid points. This method
captures the shock wave with precision, without any special treatment, and the pressure–
time curves are easily determined at any section of the pipe. The Newton–Raphson itera-
tive method involving the wave celerity is used to determine these pressure curves.
Computed results obtained by this method compare well with the numerical results based
upon the characteristics method.
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Figure 10. The calculated wave paths for different values of the quality (N=20).
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